miércoles, 11 de septiembre de 2024

 

Tercera   Guía y  Taller  de





 Razonamiento Cuantitativo


Ecuaciones

 

Una ecuación en matemática se define como una igualdad establecida entre dos expresiones, en la cual puede haber una o más incógnitas que deben ser resueltas.

Las ecuaciones sirven para resolver diferentes problemas matemáticos, geométricos, químicos, físicos o de cualquier otra índole, que tienen aplicaciones tanto en la vida cotidiana como en la investigación y desarrollo de proyectos científicos.

Las ecuaciones pueden tener una o más incógnitas, y también puede darse el caso de que no tengan ninguna solución o de que sea posible más de una solución.

Partes de una ecuación

Las ecuaciones están formadas por diferentes elementos. Veamos cada uno de ellos.

Cada ecuación tiene dos miembros, y estos se separan mediante el uso del signo igual (=).

Cada miembro está conformado por términos, que corresponden a cada uno de los monomios.

Los valores de cada monomio de la ecuación pueden ser de diferente tenor. Por ejemplo:

·         constantes;

·         coeficientes;

·         variables;

·         funciones;

·         vectores.

Las incógnitas, es decir, los valores que se desean encontrar, se representan con letras. Veamos un ejemplo de ecuación.



Ejercicios de ecuaciones primer grado

1)   2x - 34 = 120

1. Se hace la transposición de términos.

2x = 120 + 34

2. Se reducen los términos semejantes.

2x = 154

3. Se despeja la incógnita.

x =154/2 = 77


2)   10x + 5 = 3x + 12

1. Se hace la transposición de términos.

10x - 3x = 12 - 5

2. Se reducen los términos semejantes.

7x = 7

3. Se despeja la incógnita.

x = 7/7 = 1


3)   2(3x - 2) = 8

1. Se suprimen los paréntesis.

6x - 4 = 8

2. Se hace la transposición de términos.

6x = 8 + 4

3. Se reducen los términos semejantes.

6x = 12

3. Se despeja la incógnita.

x = 12/6 = 2

4)   (x + 2)2 - x2 = 60

1. Se suprimen los paréntesis desarrollando la potencia.

x2 + 4x + 4 - x2 = 60

2. Se hace la transposición de términos.

x2 - x2 + 4x = 60 - 4

3. Se reducen los términos semejantes.

4x = 56

4. Se despeja la incógnita.

x = 56/4 = 14



ejercicio con enunciado                                

1)      Si el valor de alquilado de un auto por día es de   $100.000 y adicionalmente se paga $1.000 pesos por cada kilómetro recorrido.  Si alquilamos el auto por dos días y la cuenta por pagar  fue de  $390.000. ¿Cuántos kilómetros recorrimos?

Primer paso

Definimos la variable   X                      kilómetros recorridos

Segundo paso 

Convertir en matemáticas            

Costo por recorrido                          $1.000 precio del km . X

Costo diario                                        $100,000 por día  (2 días)

Total factura                                       $390.000                

Tercer paso                                        

Hacemos el modelo matemático y lo resolvemos

1.000 X + 2(100.000)= 390.000 

1.000 X + 200,000= 390.000 

1.000 X = 390.000  - 200.000

1.000 X = 190.000

X= 190.000/1.000

X= 190 

 

Probamos el ejercicio

1.000(190) + 2(100.000)= 390.000 

190.000+200.000=390.000 

390.000=390.000   


Taller


1) Seleccionar la respuesta correcta en el juego del  laberinto. Tiene tres oportunidades. 
     Pasos
- clic en el link 
                  //wordwall.net/play/35421/062/639


    -Digitar  el nombre del estudiante
    - Jugar leyendo la pregunta en la parte inferior y seleccionar la respuesta correcta.
   - Puede jugar máximo tres veces y hay que acertar     mínimo a cuatro  preguntas de la cinco. Al  instructor le llega los resultados del juego (si quiere tome un pantallazo y lo envía al corre electrónico)
2)     Una empresa de raíces chinas y champiñones vendieron en un día  $400.000. Si se vendieron 30 bandejas de champiñón a     $4.000. Si el precio de bandeja de raíz china es de  $800 cada una. ¿Cuántas bandejas de raíz china se vendieron?

3) Un padre tiene el triple de la edad de su hijo. Si la suma de ambas edades es 56, ¿Qué edad tiene el hijo?

4)   Dos números consecutivos suman 79. ¿Cuáles son?

5) Tres canastas contienen 245 manzanas. La primera canasta tiene 15 manzanas más que la segunda y 25 más que la tercera.  ¿Cuántas manzanas hay en cada canasta?

resolver y enviar al corre electrónico

wfsuarez73@misena.edu.co






No hay comentarios:

Publicar un comentario

  Tercera   Guía y  Taller  de  Razonamiento Cuantitativo Ecuaciones   Una ecuación en matemática se define como una igualdad establecida en...