miércoles, 11 de septiembre de 2024

 

Tercera   Guía y  Taller  de





 Razonamiento Cuantitativo


Ecuaciones

 

Una ecuación en matemática se define como una igualdad establecida entre dos expresiones, en la cual puede haber una o más incógnitas que deben ser resueltas.

Las ecuaciones sirven para resolver diferentes problemas matemáticos, geométricos, químicos, físicos o de cualquier otra índole, que tienen aplicaciones tanto en la vida cotidiana como en la investigación y desarrollo de proyectos científicos.

Las ecuaciones pueden tener una o más incógnitas, y también puede darse el caso de que no tengan ninguna solución o de que sea posible más de una solución.

Partes de una ecuación

Las ecuaciones están formadas por diferentes elementos. Veamos cada uno de ellos.

Cada ecuación tiene dos miembros, y estos se separan mediante el uso del signo igual (=).

Cada miembro está conformado por términos, que corresponden a cada uno de los monomios.

Los valores de cada monomio de la ecuación pueden ser de diferente tenor. Por ejemplo:

·         constantes;

·         coeficientes;

·         variables;

·         funciones;

·         vectores.

Las incógnitas, es decir, los valores que se desean encontrar, se representan con letras. Veamos un ejemplo de ecuación.



Ejercicios de ecuaciones primer grado

1)   2x - 34 = 120

1. Se hace la transposición de términos.

2x = 120 + 34

2. Se reducen los términos semejantes.

2x = 154

3. Se despeja la incógnita.

x =154/2 = 77


2)   10x + 5 = 3x + 12

1. Se hace la transposición de términos.

10x - 3x = 12 - 5

2. Se reducen los términos semejantes.

7x = 7

3. Se despeja la incógnita.

x = 7/7 = 1


3)   2(3x - 2) = 8

1. Se suprimen los paréntesis.

6x - 4 = 8

2. Se hace la transposición de términos.

6x = 8 + 4

3. Se reducen los términos semejantes.

6x = 12

3. Se despeja la incógnita.

x = 12/6 = 2

4)   (x + 2)2 - x2 = 60

1. Se suprimen los paréntesis desarrollando la potencia.

x2 + 4x + 4 - x2 = 60

2. Se hace la transposición de términos.

x2 - x2 + 4x = 60 - 4

3. Se reducen los términos semejantes.

4x = 56

4. Se despeja la incógnita.

x = 56/4 = 14



ejercicio con enunciado                                

1)      Si el valor de alquilado de un auto por día es de   $100.000 y adicionalmente se paga $1.000 pesos por cada kilómetro recorrido.  Si alquilamos el auto por dos días y la cuenta por pagar  fue de  $390.000. ¿Cuántos kilómetros recorrimos?

Primer paso

Definimos la variable   X                      kilómetros recorridos

Segundo paso 

Convertir en matemáticas            

Costo por recorrido                          $1.000 precio del km . X

Costo diario                                        $100,000 por día  (2 días)

Total factura                                       $390.000                

Tercer paso                                        

Hacemos el modelo matemático y lo resolvemos

1.000 X + 2(100.000)= 390.000 

1.000 X + 200,000= 390.000 

1.000 X = 390.000  - 200.000

1.000 X = 190.000

X= 190.000/1.000

X= 190 

 

Probamos el ejercicio

1.000(190) + 2(100.000)= 390.000 

190.000+200.000=390.000 

390.000=390.000   


Taller


1) Seleccionar la respuesta correcta en el juego del  laberinto. Tiene tres oportunidades. 
     Pasos
- clic en el link 
                  //wordwall.net/play/35421/062/639


    -Digitar  el nombre del estudiante
    - Jugar leyendo la pregunta en la parte inferior y seleccionar la respuesta correcta.
   - Puede jugar máximo tres veces y hay que acertar     mínimo a cuatro  preguntas de la cinco. Al  instructor le llega los resultados del juego (si quiere tome un pantallazo y lo envía al corre electrónico)
2)     Una empresa de raíces chinas y champiñones vendieron en un día  $400.000. Si se vendieron 30 bandejas de champiñón a     $4.000. Si el precio de bandeja de raíz china es de  $800 cada una. ¿Cuántas bandejas de raíz china se vendieron?

3) Un padre tiene el triple de la edad de su hijo. Si la suma de ambas edades es 56, ¿Qué edad tiene el hijo?

4)   Dos números consecutivos suman 79. ¿Cuáles son?

5) Tres canastas contienen 245 manzanas. La primera canasta tiene 15 manzanas más que la segunda y 25 más que la tercera.  ¿Cuántas manzanas hay en cada canasta?

resolver y enviar al corre electrónico

wfsuarez73@misena.edu.co






lunes, 2 de septiembre de 2024

 

Segunda   Guía y  Taller  de

 Razonamiento Cuantitativo


OPERACIONES CON FRACCIONES

Como las fracciones son números, es lógico que se puedan sumar y restar. Estas operaciones son fáciles de calcular, aunque se realizan de forma distinta según si los denominadores de las fracciones son iguales o distintos.

Recordad que el numerador es el número sobre la raya de la fracción y el denominador es el que esta debajo de la raya. Por ejemplo,

Fracciones homogéneas

Suma de fracciones homogéneas

La suma de dos fracciones con el mismo denominador se calcula sumando sus numeradores. El denominador se mantiene.

 

EJEMPLO  1

Explicamos cómo sumar y restar fracciones (con denominador igual y con denominador distinto) y resolvemos 35 ejercicios de sumas y restas. Fracciones, Quebrados. ESO. Secuandiar. Matemáticas.

Representación gráfica:

Explicamos cómo sumar y restar fracciones (con denominador igual y con denominador distinto) y resolvemos 35 ejercicios de sumas y restas. Fracciones, Quebrados. ESO. Secuandiar. Matemáticas.

EJEMPLO  2



Resta de fracciones homogéneas

Explicamos cómo sumar y restar fracciones (con denominador igual y con denominador distinto) y resolvemos 35 ejercicios de sumas y restas. Fracciones, Quebrados. ESO. Secuandiar. Matemáticas.

Fracciones heterogéneas

Suma de fracciones heterogéneas


Se puede hacer por dos métodos, el método del mínimo común denominador para la suma o resta de dos o más fracciones y el método de la multiplicación en cruz para la suma o resta de dos fracciones. El método más utilizado el el del mínimo común denominador.




METODO EN CRUZ


Para resumir el anterior procedimiento se usa la fórmula:

Procedimiento para sumar fracciones heterogéneas.

Siempre que sea posible se debe simplificar el resultado de la suma, por ejemplo:

Imagen ejemplo de suma de fracciones heterogéneas.

En este caso el resultado de la suma es sesenta y ocho sesentavos, sin embargo después de simplificar se puede decir que es diecisiete quinceavos.

METODO EN MÍNIMO COMÚN MÚLTIPLO



Ejemplo 1


Ejemplo 2


La suma de dos o más fracciones heterogéneas se realiza de la siguiente manera:

  1. Se halla el mínimo común múltiplo de los dos denominadores.
  2. Se calculan los numeradores con la fórmula: numerador por denominador común y dividido por denominador.
  3. Se suman los numeradores (dado que las fracciones modificadas tienen el mismo denominador).
Suma de fracciones de distinto denominador

Ejemplo:

1. Se calcula el mínimo común múltiplo (m.c.m.), por lo que se tiene que 

2. Se calculan los numeradores.

  • Numerador de la primera fracción: 
  • Numerador de la segunda fracción: 
  • La suma se reduce a las siguientes fracciones:

3. Se suman los numeradores:

.

ejemplo 2

1/6 + 4/9 = 3/18 + 8/18 = 11/18

Ejemplo 3





suma y resta de 3 fracciones con diferente denominador con MCM

La respuesta final es 415.

2) Calcular 2– 114:

Como las 3 fracciones tienen distinto denominador, primero calculamos el mínimo común múltiplo de los denominadores y después vienen el resto de pasos:

suma y resta de 3 fracciones con diferente denominador con MCM

La fracción resultante es 912, la cual vamos a simplificar dividiendo el numerador y el denominador entre 3. Simplificando, se obtiene como respuesta 34.






Taller

Resolver los siguientes ejercicios en cualquier método,   en el cuaderno o en el computador, y enviar el correo electrónico

wfsuarez73@misena.edu.co

 

Respuesta con los dos métodos:


Problema 2)





                          Problema    7)                                                      

Felipe compró 1 kilo de Camarones. En el almuerzo se gastó  3/4 del kilo. ¿Qué cantidad de camarones le quedaron para otro almuerzo?

 




  Tercera   Guía y  Taller  de  Razonamiento Cuantitativo Ecuaciones   Una ecuación en matemática se define como una igualdad establecida en...